Minimal dominating sets in graph classes: Combinatorial bounds and enumeration
نویسندگان
چکیده
منابع مشابه
Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration
The maximum number of minimal dominating sets that a graph on n vertices can have is known to be at most 1.7159. This upper bound might not be tight, since no examples of graphs with 1.5705 or more minimal dominating sets are known. For several classes of graphs, we substantially improve the upper bound on the maximum number of minimal dominating sets in graphs on n vertices. In some cases, we ...
متن کاملEnumeration of Minimal Dominating Sets and Variants
In this paper, we are interested in the enumeration of minimal dominating sets in graphs. A polynomial delay algorithm with polynomial space in split graphs is presented. We then introduce a notion of maximal extension (a set of edges added to the graph) that keeps invariant the set of minimal dominating sets, and show that graphs with extensions as split graphs are exactly the ones having chor...
متن کاملOn the Neighbourhood Helly of Some Graph Classes and Applications to the Enumeration of Minimal Dominating Sets
We prove that line graphs and path graphs have bounded neighbourhood Helly. As a consequence, we obtain output-polynomial time algorithms for enumerating the set of minimal dominating sets of line graphs and path graphs. Therefore, there exists an output-polynomial time algorithm that enumerates the set of minimal edge-dominating sets of any graph.
متن کاملOn the Enumeration of Minimal Dominating Sets and Related Notions
A dominating set D in a graph is a subset of its vertex set such that each vertex is either in D or has a neighbour in D. In this paper, we are interested in an output-sensitive enumeration algorithm of (inclusionwise) minimal dominating sets in graphs, called Dom problem. It was known that this problem can be polynomially reduced to the well known Transversal problem in hypergraphs. We show th...
متن کاملMinimal Dominating Set Enumeration
Let G be a graph on n vertices and m edges. An edge is written xy (equivalently yx). A dominating set in G is a set of vertices D such that every vertex of G is either in D or is adjacent to some vertex of D. It is said to be minimal if it does not contain any other dominating set as a proper subset. For every vertex x let N [x] be {x} ∪ {y | xy ∈ E}, and for every S ⊆ V let N [S] := ⋃ x∈S N [x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2013
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2013.03.026